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Abstract. Boundary conditions for unconventional superconducting order parameters at a
superconductor-to-insulator boundary with a combination of diffusive and specular scattering
are derived from quasiclassical weak-coupling theory for a general Fermi surface. The resulting
variational result for the extrapolation length is compared to recent numerical results for a d-wave
order parameter and good agreement is found.

The starting point for the analysis of the effects of a superconductor-to-insulator sur-
face within the Ginzburg–Landau theory of superconductivity is the introduction of a
phenomenological surface free energy for the order parameter (ηγ,i) of the following
form [1]:

Fsurface=
∑
γ,i,j

gγ,i,j (n)

∫
dS ηγ,iη

∗
γ,j (1)

wheren is the surface normal,γ represents an irreducible representation of the relevant
group andi, j span the basis of this representation. Including this surface free energy with
the bulk free energy allows a study of the form of the order parameter at a superconductor-
to-insulator boundary [1], a study of the surface superconductivity [2–5], and a study of
the upper critical field as a function of sample thickness [6]. To gain an insight into what
constitute reasonable values for the coefficientsg, a microscopic calculation is desirable.
This can be done via the calculation of a related quantity known as the extrapolation length.
For an isotropic superconductor the extrapolation length is given byb = κ/g [7] and κ is
defined through the bulk Ginzburg–Landau free energy

F = α0(T − Tc)|ψ |2+ β|ψ |4+ κ
∑
i

(Diψ)(Diψ)
∗ (2)

where Di = ∂i − (i 2e/h̄c)Ai andA is the vector potential. Microscopic calculations have
been made to determineb. Such calculations were originally performed for a spherical Fermi
surface in the presence of specular and diffusive boundaries for isotropic and p-wave order
parameters within a weak-coupling model [7–9]. More recently such calculations have been
performed for general order parameter symmetries in the presence of a specular reflecting
surface in a weak-coupling model with a spherical Fermi surface [3] and a general Fermi
surface [6], and for a diffusive scattering surface in the presence of a spherical Fermi surface
for general order parameter symmetries [2]. Efforts have also been made to study the form of
the order parameter at a superconductor–insulator boundary beyond the Ginzburg–Landau
regime for spherical and cylindrical Fermi surfaces and for both specular and diffusive
scattering [10, 11]. Here an analytical formula for the extrapolation length for general order
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parameter symmetries with a general Fermi surface in the presence of a boundary with
mixed specular and diffusive boundary conditions is presented. The analogous formulae for
cylindrical and spherical Fermi surfaces are also presented. In the case of a d-wave order
parameter in the presence of a cylindrical Fermi surface the formula is compared to the
recent numerical results of Alberet al [12].

The correlation function method developed by de Gennes [7, 8] and extended to
unconventional superconductors by Sigrist and Ueda [1] is used. A weak-coupling model
with a general Fermi surface and no spin-flip scattering at the surface is assumed. The
development of the formalism initially parallels that of Sigrist and Ueda [1]. The starting
point is the following equation for the order parameterηi(R) (see reference [1] for details):

ηi(R) =
∫

d3R′ Kij (R,R′)ηj (R′) (3)

with Kij (R,R′) given by [1]

Kij (R,R
′) = gkBT

∑
ωn

∑
ν,µ

〈µ|tr 1̂†i [J(R)]|ν〉〈ν|1̂j [J(R)]|µ〉
(iωn − εν)(−iωm − εµ) (4)

where

〈ν|1̂j [J(R)]|µ〉 = [1s,s ′ [(∇r −∇r1)/2i]φ∗νs(r)φµs ′(r1)]r1→r (5)

and 1̂i(p) is related to the gap function̂1(R,p) by 1̂(R,p) = ∑
i ηi(R)1̂i(p), the

hat in 1̂ indicates a 2× 2 matrix in spin space that corresponds to the four allowed
spin pairings of the paired quasiparticles, and ‘tr’ indicates a trace over this spin matrix
(see reference [1] for details). A feature that is important in later considerations is that
Ki,j (R,R

′) = Kj,i(R′,R). After manipulating the kernel and using the semiclassical and
weak-coupling approximations, which entail∑

ν

〈tr 1̂†i 1̂j 〉δ(εv − ε) ≈ N(0)〈tr 1̂†i 1̂j 〉ε=εF ,classical

[7, 8] whereN(0) is the density of states at the Fermi surface, the following form for the
kernel is found [1]:

Kij = gN(0)πkBT
∑
ωn

∫ ∞
0

dt exp(−2|ωn|t)〈tr 1̂†i [J(R)]1̂j [J(R′, t)]〉εF ,classical (6)

where the expectation value is an average in a canonical ensemble for an electron with
momentum on the Fermi surface.

In the following it is assumed that the surface normal lies along a direction where
εF (px, py, pz) = εF (px, py,−pz); this will ensure that a quasiparticle reflected specularly
from the boundary will have a momentum that lies on the Fermi surface. This restriction
limits the analysis to high-symmetry directions where the off-diagonal components in the
kernel are typically zero; therefore only the diagonal components are considered from here
on. It is further assumed that there is homogeneity in the plane orthogonal to the surface
normal.

Using the method of quasiclassical trajectories [13, 9, 7] it can be shown that the kernel
takes the form (this is a simple extension of the work of Shapoval [9])

Kii(z, z
′) = Kbulk

ii (z− z′)+Ksurf
ii (z, z

′) (7)
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where

Kbulk
ii (z− z′) =

〈∑
ωn

exp

(
−2
|ωn||z− z′|

vz

)
tr[1̂†i (p)1̂i(p)]

vz

〉
(8)

Ksurf
ii (z, z

′) =
〈∑
ωn

∫
p′z>0

d3p′ S(p→ p′) exp

(
−2
|ωn|z′
v′z
− 2
|ωn|z
vz

)
tr[1̂†i (p)1̂i(p

′)]
v′z

〉
(9)

where〈A〉 means the average ofA over the portion of the Fermi surface withvz > 0, and
S(p → p′) gives the probability density for scattering from momentump to momentum
p′ (this distribution satisfies

∫
pz>0 S(p

′ → p) d3p = 1). The first term of the kernel
corresponds to the contribution from the bulk (which remains when no surface is present),
and the second contribution arises from the scattering of the quasiparticles from the surface.
This scattering is characterized by the probability densityS(p→ p′). For specular reflection

Sref (p→ p′) = δ3(p′ − 2(n · p)n).

For diffusive scatteringSdiff (p→ p′) is independent ofp and the conditionKii(z, z′) =
Kii(z

′, z) implies

Sdiff (p→ p′) = v′zδ(ε(p′)− εF )/〈vz〉.
Here the form

S(p→ p′) = (1− P)Sref (p→ p′)+ PSdiff (p→ p′)

is used, which corresponds to a probability 1−P of being specularly reflected. The transition
temperature is eliminated via the relation∫

dz Kbulk
ii (z) = 1.

The equation that the order parameter satisfies is given by

ηi(z) =
∫ ∞

0
dz′ Kii(z, z′)ηi(z′). (10)

It can be verified thatηi = ηi0(1+ x/bi) is a solution to equation (10) asx → ∞. This
allows the use of the variational approach of Svidzinsky [14] to determine the coefficient
b. Substitutingη = C(x + q(x)) (thenb = limx→∞ q(x)) into equation (10) gives

q(x) = E(x)

2
+
∫ ∞

0
K(x, x ′)q(x ′) dx ′ (11)

with

E(x) = 2
∫ ∞

0
x ′K(x, x ′) dx ′ − 2x.

The above equation can be found by minimizing the functional

9[q] =
(∫ ∞

0
dx q(x)

[
q(x)−

∫ ∞
0

dx ′ K(x, x ′)q(x ′)
])/[∫ ∞

0
dx q(x)E(x)

]2

. (12)

The minimum value of9[q] is given by

9min = 1
/(

2
∫ ∞

0
dx q(x)E(x)

)
. (13)
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The coefficientb can be expressed in terms of9min as

b =
(

1

2

∫ ∞
0

dx xE(x)+ 1

49min

)
×
(

1

2

∫ ∞
0

dx E(x)−
∫ ∞

0
dx ′ x ′

[∫ ∞
0

dx K(x ′, x)− 1

])−1

. (14)

Using a constant forq(x) gives the following result:

bi = (14ζ(3)kBTc)−1

〈tr1†i1iv2
z 〉 + P tr [〈1†i vz〉〈1̃iv2

z 〉 − 〈1†i v2
z 〉〈1̃ivz〉]/2〈vz〉

×
{
(7ζ(3))2

2π3

[〈tr1†i1iv
2
z 〉 + (1− P)〈tr1†i 1̃iv

2
z 〉 + P tr 〈1ivz〉〈1̃iv

2
z 〉/〈vz〉]2

〈tr1†i1ivz〉 − (1− P)〈tr1†i 1̃ivz〉 − P tr 〈1ivz〉〈1̃ivz〉/〈vz〉

+ π3

24
[〈tr1†i1iv

3
z 〉 + (1− P)〈tr1†i 1̃iv

3
z 〉 + P tr 〈1†i v2

z 〉〈1̃iv
2
z 〉/〈vz〉]

}
(15)

where1 = 1̂(p), 1̃ = 1̂( p̃), p̃ = (px, py,−pz), andζ(3) =∑n>0 1/(n+ 1)3.
For a spherical Fermi surface and for a Fermi surface with cylindrical symmetry in

the effective-mass approximation (when the axis of symmetry is orthogonal to the surface
normal) the extrapolation length can be written as

bi

ξ0
=
(
(7ζ(3))−1

/{∫ 1

0
s2F−(s) ds + P 1

2π
tr

[(∫ 1

0
s1̂
†
i (s)

)(∫ 1

0
s21̂i(−s)

)
−
(∫ 1

0
s21̂

†
i (s)

)(∫ 1

0
s1̂i(−s)

)]})
×
{
π4

24

[∫ 1

0
s3F−(s) ds + (1− P)

∫ 1

0
s3F+(s) ds

+ Pπ−1 tr

(∫ 1

0
s21̂

†
i (s)

)(∫ 1

0
s21̂i(−s)

)]
+ (7ζ(3))2

2π2

[∫ 1

0
s2F−(s) ds + (1− P)

∫ 1

0
s2F+(s) ds

+Pπ−1 tr

(∫ 1

0
s1̂
†
i (s)

)(∫ 1

0
s21̂i(−s)

)]2/[∫ 1

0
sF−(s) ds

− (1− P)
∫ 1

0
sF+(s) ds − Pπ−1 tr

(∫ 1

0
s1̂
†
i (s)

)(∫ 1

0
s1̂i(−s)

)]}
(16)

where

ξ0 = vF /2πkBTc
F−(s) = (1/2)tr

∫ 2π

0
dφ [1̂†i (s, φ)1̂i(s, φ)+ 1̂†i (−s, φ)1̂i(−s, φ)

]
F+(s) = (1/2)tr

∫ 2π

0
dφ [1̂†i (s, φ)1̂i(−s, φ)+ 1̂†i (s, φ)1̂i(−s, φ)

]
1̂i(s) =

∫ 2π

0
dφ 1̂i(s, φ)

and1̂i(φ, s) is given by settingp = (√1− s2 cosφ, ε1/2
√

1− s2 sinφ, s) in 1̂(p), where
ε = m⊥/mc, andmc andm⊥ are the effective masses along and perpendicular to the axis
of cylindrical symmetry.
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Figure 1. The extrapolation length for a dx2−y2 superconductor with a cylindrical Fermi surface.
P represents the probability of diffusive scattering, andθ is the angle that the surface normal
makes with thex̂-direction. The curves form top to bottom correspond toθ = 0, π/18, π/8,
andπ/4 respectively.

As a particular example, the extrapolation length for a d-wave superconductor with a
cylindrical Fermi surface takes the form

b

ξ0
= 4

7πζ(3)

{
π4

24

[
2

3
+ 2

35
cos(4θ)+ (1− P)

(
2

35
+ 2

3
cos(4θ)

)
+ P π

2

32
cos2(2θ)

]
+ 49ζ 2(3)

32

[1+ (1− P) cos(4θ)+ P 1
3 cos2(2θ)]2

1− 1
15 cos(4θ)− (1− P)(cos(4θ)− 1

15)− P 2
9 cos2(2θ)

}
(17)

where θ is the angle between the surface normal (which lies in the basal plane) and
the crystallographica-direction. The extrapolation length in this case has been studied
numerically [12] and this provides a good test of the variational principle used to find
equations (15), (16), and (17). Figure 1 shows the results from equation (17); this
figure should be compared to figure 6 of reference [12]. The numerical values given in
reference [12] forb/ξ0 < 4.0 all agree to within less than five per cent with those found
using equation (17). Forb/ξ0 > 4.0 the values found by using equation (17) are greater
than those found numerically. The worst agreement is found forθ = 0 andP = 0.2, where
equation (17) givesb/ξ0 = 9.0, while the result of reference [12] isb/ξ0 = 7.4 (this is the
largest value that they compute forb/ξ0). This discrepancy is presumably due to finite-size
effects that will arise in the numerical approach of reference [12]. Note that the variational
approach used here gives a lower bound for the actual value ofb/ξ0.

In conclusion, a formula has been found for the extrapolation length within a weak-
coupling quasiclassical theory for general order parameter symmetries, general Fermi
surfaces, and a combination of specular and diffusive boundary conditions. This formula
is valid only along high-symmetry directions for a general Fermi surface. For the case of
d-wave pairing, the formula gives values that agree well with values found numerically
[12]. Furthermore, the variational approach gives the correct values forb/ξ0 in the solvable
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limits for all order parameter symmetries [3, 2], indicating that the approach used here to
find the extrapolation length is reliable.
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